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STABILITY OF STEADY MOTIONS OF A RIGID BODY
WITH AN ELASTIC SHELL PARTIALLY FILLED WITH FLUID"

(**)

V.N. RUBANOVSKII

A problem of stability of steady motions of a rigid body with a cavity in the form
of a closed thin elastic shell partially filled with fluid, in a conservative force
field, is considered. It is assumed that stationary holonomic constraints are im-
posed on the body allowing its rotation about some spatially fixed axis, and the
forces acting on the body have zero moment about this axis. The conditions of
stability are obtained from the solution of the problem dealing with the minimum of
the changed potential energy W of the system obtained by studying its second varia-
tion. Sufficient conditions of the positive definiteness of §2W are obtained in
the form of Silvester condition of positive definiteness of some quadratic form of

a finite number of variables. A method for constructing this quadratic formis given.

1. Let us consider a motion of a rigid body with a cavity in the form of a closed, thin
elastic shell partially filled with fluid, the surface tension of which can be neglected, in
a potential force field. We assume that stationary constraints imposed on the body allow its
rotation about the £; —axis of the inertial rectangular coordinate system 0'§1§2§3, and the
forces acting on the body have zero moment about this axis. We also introduce a moving rect-
angular coordinate system Omnz,z; the unit vectors iy, i, i; of which coincide with the principal
central axes of inertia of the body and shell in the undeformed state. The position of the
rigid body relative to the O0'§1E,E; coordinate system will be described by the Lagrangian co-
ordinates ¢, . .., q, (n < 6) where g, is the angle of rotation of the body about the E,—axis.We
define the middle surface S of the shell in the undeformed state by the equation /1/

3

M(a 42, )= M(a, B = D 2, (a, B) iy (1.1

v=1
(0=l a<2a, P BB

where a and f§ are coordinates of a point in the surface. We take the lines of curvature of the
middle surface as coordinate lines @ = const (B-lines) and P == const («-lines) and assume that
the a-lines are closed and the values f=§;,, § =@, correspond to the edges of the shell. We
introduce a triad of vectors Mq, Mg, n

M oM

i
)Iq:—-gg, NIF)Z—B—E-, ﬂ:TE(l\iaXMﬁ) (1.2)
M, Mﬁ MB ‘ M, 2 2 2 2
T:,n:__}T’ —ﬁ-;(n:——;i——, A? = Mg, B:MB

We adopt, for the three-dimensional space occupied by the shell, the Kirchhoff—Love /1/

hypothesis on the conservation of the normal element. Then the regions occupied by the shell

in the undeformed and deformed state can be described, respectively, by the equations /1/
M¥=M(x, B) +2n(a, B), M*¥*=M*(@,B)+U+2(n<Q) (1.3)
—h<Cz<lh

. M, M,
Ut,a+2n,B)=U o, P=u(t, o B)T +oe(t, o, ﬁ)—B— —wi(t,a Bf)n
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where 2k denotes the shell thickness, U is the middle surface elastic displacement vector and
Q is the vector of elastic rotation. We denote by z.* xzv* (v=1, 2, 3) the coordinates of

the points of the space occupied by the shell in the undeformed and deformed state, respectiv-
ely. Then from (1.1)— (1.3) we obtain

¥ = (o, ﬁ) + —A_:E (12’1135 -— Igaxzﬂ), ¥ = x* 4wy (1.4)

£ I
wy =uw® — 2", = % u 4+ -—Il}fl v—nw (123)

z
UJ?) —

18 . 1 L
T V5 ¥ =g (LT — Tyadep)

where n;, n, and ng are projections of the vector n on the 1, Z, and z3; axes.
Let us assume that the shell is rigidly clamped along its edges to the rigid lids

(oxr
bulkheads) situated at a constant distance from each other, so that
u=v=w=0_0, aw/aﬁ'__oas ﬁ=ﬁ17ﬁ=62a0§a<2n (1.5)
We adopt the following expression /1/ for the potential energy of shell deformation:
2Lk
My = 1_GZSH*(E,M)ABdadﬁ 6
8

2

2 =1+ &) —~2(1 —0) (elsg — —2—- 232> + }; {(%1 = %3)? —
2(1 — o) (a%y — %3Y)

1 Ou f 04 w 1 dw 1 08 w
C=FT % TAEB TR CTEFH B R
o= ) )

e (R ) e (3
m=— et o A

Ri'= — (n-Mog) A%, By'= — (n-Mgp)B?

Here E is the modulus of elasticity, o (o < 1) is the Poisson's ratio, €, &, ¢; and x, x, x; are
the components of the tangential and bending deformation respectively, and R,, R,
principal radii of curvature of the surface S.

Let us denote by Il.(qi, .. ., gn-1) the potential energy of the forces acting on the rigid
body, and by U(§,, &, &;) the force functon of the mass forces applied to the particles of the
shell and the fluid. We denote by U (zi, %3, 3, §1, - - ., gn-1) the force function transformed to

the variables i, I, z3, Then we have the following expression for the potential energy of the
external forces:

are the

O,=T, —p\ Uy (@, Bs w0, 0%, ¥, G - - Goot) ABdadB — 0o { U dr (1.7)
5 ¢
o
Ue= S Ulzi* +wy, 2% +wn, 25 +wgqu, -

Zh
()4 )

and P, denote the densities of the shell and fluid, and T is the region occupied by
the fluid at the particular instant.

The mechanical system under consideration admits the energy integral T - Il = const ([] =
I, + M) and area integrals Go-§;° =/ = const where T and G, denote the kinetic energy and
kinetic moment of the system relative to the point ¢ and §,° 1is the unit vector of the £,
axis, the projections of which on the z; axes are denoted by Vv;=v; (q1, . - -, ¢,.1)(i =1, 2, 3).

We introduce the rectangular O'E/ E,’E; coordinate system rotating about the &; axis  with

angular velocity , and denote by T* and Go* the kinetic energy and kinetic moment of the

system relative to the point (' in its motion relative to the ('L'§,’'§; axes. Then the energy
area integrals become

vy Qn-1) X

where 0

T* + QGo*-E° + 1, JQ + 11 = const, Go*-&° + JQ — k

where J is the moment of inertia of the system about the £, axis. The quantity Q is chosen
so that the relation Gp*E,°=0 holds at any instant of time. Then JQ =k and the energy
integral can be written in the form T* 4 W = const, where

> k*
W= 4n (1.8)
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is the changed potential energy of the system. Taking into account (1.4), we obtain the fol-
lowing expression for J:

== 2 (V1907 4 M %Xy — v Xp)? + 2}?(1)110]} -+ {1.9)

{123}

491/2 & J* {ex, 5; u, v, y, “;7 iy oy q”'l) AB da dﬁ +}0‘z V(Elz —+ ‘ézz) dr
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{123)

Dvgvg (el 4+ zged® 4w + 1

) bt +
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Here M, Jy, J4 J3 are the mass and the principal axes of inertia of the rigid body and shell
in its undeformed state, X, (g, ..., ¢,u) (i = 1,2, 3} are the projections on the r; axes of the
radius vector drawn from the point () to the point O, R® are the projections on the same axes
of the vector R =X — v{X.v) describing the shortest distance between the §; axis and the
point O, and z,; are the coordinates of the center of mass of the rigid body and shell.

2. We obtain the eguations of steady motion from the principle of virtual displacements,
calculating the first variation 8W and equating it to the elementary work 04, done over the
virtual displacements by the forces of external p{*? and internal p(-) gas pressure acting on
the shell., The equations have the form

aw el 1o, 8 .
3@;:@7~79‘3§=0 (f=1.....0—1) (2.1)
grad | U+ @@ + &Y — - | =0 int (2.2)
p-—p("} on ¥ (2.3)
9Ty 1o [0y 1 8Ux 4
Gt = Dati) = Dy ) — g (o — ) — 2.4
{b— s pi2 {8 § (?J*
E {7777 TR oy

_Hl i "3?7(';17 * WT/] meh"”}:ﬂ

(123}

-%%‘f — Ug (1) — Dy (@) -+ Do (16} + Dup () -+ Dgg () —
i 2 | ! 2y
5 DW= 12y~ Y {1+ - Yoy
3 1 2;;{ IR.E; |
I PANF 8 By d A )
s (7 + ) L7 (o m) + 5 () ) B} =
[ F(p) on .S
| F(pw) on S,
a1 f » gl
Dy {fy = — AB (,;\ (\AB *}; Du = =5 wov ( af;)
W U—p 8 4 73 3
D{U"v—“‘g;f-’“{aw - B{?(BW\'*' Sﬁ\ }}f
1 o ’53r / . h h
F(p)= SER ! { [—( ' )m[)(iu_><1m72>}

Here I is the free surface of the fluid, S8 and S,are the parts of § corresponding to the
parts of the cavity walls wetted and not wetted by the fluid, & + §, =S5, and.p is the hydro-
dynamic pressure. The equations (2.1)- (2.4) must be supplemented by an equatlon obtained from
the first equation of {(2.4) by replacing u. a, 4, 5, Ry, Ry, vy by v, B, B, A, R,, Ry, v respectively,

and adding the condition (1.5).
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The steady motions represent uniformrotations of the system regarded as a rigid body
about the &, axis, with the angular velocity Q = &J,"!, where J is the value of J <for the
steady motion. Integrating (2.2) and using (2.3}, we find the pressure within the fluid and
equation of its free surface during the steady motion

P& Ba 8) = s U (B Ea £) o Yapy O (B + B3 — (2.5)
Uik &y &) + VP (82 4+ &) = + P(-)/Pz (2.6)

The value of the constant ¢ is determined by the amount of fluid within the cavity. Equations
{2.4) with {2.5) and (1.5) taken into account are used to determine the deformation of the
shell in the course of steady motion. Having found the form of the free fluid surface and

shell deformation, we obtain from (2.1) the values @i, - .., ¢p-1 for the steady motion of the

system.

3. Let us consider a certain steady motion. To simplify the calculations we assume that
in this motion ¢;=0(=1,.. ., — 1) and the whole deformed part of the cavity surface is wet-
ted by the fluid. Let

G=00=1.. . n—1) =y B),v= (e ), v=uy(a, B {3.13

be a particular solution of the equations of steady motion for which the fluid occupies the
region 1, bounded by the free surface I, determined by the equation

Dy By, By By) = U (Ey0 B Ba) o+ Vo2 (B2 + 820 = o5 (e = ¢ + pUYpy) (3.2

by the inner surface $,) of the shell, and by the part T, + wetted by the fluid, of the sur-
face of the undeformed cavity walls. The position of the fluid in relation to the surface
(3.2} is on that side, for which @, > ¢,

Let us investigate the stability of the motion (3.1) (the definition of stability is given
in /2/). We obtain the conditions of stability from the V.V, Rumiantsev theorem /3/ as the
sufficient condition for the minimum of the changed potential energy W for the motion (3.1).
Let us put, in the perturbed motion,

U Uy e Uy, DR g b U, WTE Wy o Wy (3.3)

and retain the previous notation for g¢; . We denote the quantities v, V. ¢ %, 2, corresponding
to the values of (3.3) by ’

V=Tt Yo VS 0 6 e o (3.4)
#T g b Ky e = 3" et )
where the quantities with zero subscript correspond to the motion (3.1).
From (1.8) we obtain the expression for the second variation
QTW =: — 1f, QSRS 4 8T - Q3R (BY)2 {3.5)
In addition to the surface (3.2}, we introduce a two-parameter family of surfaces
Dy = U (5,5 E)_}_m_ki_.(:a,«::)‘_c L Ae (3.6}
1 Sie G by 2(]0+6J)'~' =1 Sat) = Cg g -
Let us consider, for some sufficiently small values of ¢; (f= 1..., n»n— 1}, 4 t4, ¥4, Lthe region

1, occupied by the fluid in the case when its free surface belongs to the family (3.6), with
4c determined from the condition that the values of regions volume 7, and 1, are the same.
We compute the variation AW =1, (8*w)._, of the functional} W occurrring when the system pas-
ses from the unperturbed state (3.1) to ancther, sufficiently close perturbed state in which
the fluid occupies the region 1. The transformation is carried out in two stages /4/: 1)
the whole system regarded as a rigid body is displaced into the perturbed state; 2) the shell
is deformed by imparting to it additional small elastic displacements u,, r,, v, and the fluid
is deformed by applying to its boundary surface a layer At= 1, —1,0f zero volume, intoc the
shape with free surface (3.6) so that the fluid occupies the region 7. We write the expres-

sion for (W), in the form

W = 8W 4 82W, 87 = 83,1 4 83,1V (3.7)

Here 42w and §°W denote the increments in Wincurred during the passage of the system to
its perturbed state as a rigid body, and when the shell is deformed and a layer 4Ar placed
on the boundary surface of the fluid respectively, W and 6§(,_,)W are the parts of the in-
crement 8#W not depending and depending respectively on the presence of the fluid. Similarly
we have
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8 = 81 8,0, 8,0 = 8, ()] + 8, 4y
27 — 2
827 = 8,3 4 8,2/, ézlhé,,mf—yém)
Taking into account (3.5), (3.7) and (3.8) we can write the increments 6, W and 8ipW in
the form
2 _ 1
éQ(I)VV" h’(l)ndTéz(l}“ - T bz(l)J - ()‘] 1[261J‘So(1) (SQ(I)J)',] (3.9)
62(2)”’ - 62(‘2)”0 7V—2——‘ B0y ;,szgl [2 (61‘/ =+ 62(|)j) 0(2)1 + (62(7) ] (3.10)
From (1.8) and (1.9) we find
n—1i P -1 P
- N A J
82 = Z (_H ‘ 5122(*) (3.11)
d¢.9q. 1 1%y q
&= qlaqj )0 it 1 ~ Oq]. o
Integrating (l.9) by parts and taking into account (1.3) and (1.5), we obtain
g *(6J, 1 aJ, 1 R
62(1)'] :4‘)"15{2 { du R, ("H " Ta [1 "‘7A§R_ <~+ R, )] (3.12)
3
aJ 1 2 aJ aJ aJ
(1) e P2 (g, 9 *
ZIlCLH }O W ]L{ O '",113[8(1 (B Ay )‘T B < >.[
(123)
ZU h? ) k1 t
U ag) ot wIE E 71’) %
(123)
_6_ B . 9 A z \ (1)
Here and henceforth I* denotes a sum of two similar expressions, the second of which is obtained
from the first when u,y.@, 4, R,. R, are replaced by r, v'. p. #. R» Ry respectively. Further, (1.7)
(1.8), (1.4) and (3.3) yield, after integrating by parts (y;=1v, 2= v
n—1
U (L * 0y 1 o/
s 5 (2 (3% e
( [ - ;
201) e 3 3 & ‘ £ aqj i, ‘3\7 aq' * T
3y, t 9 7, 1 a4 ; U,
[ 3 * —
(awaq,- + 45 3 ([ Fdq, I+ 5 B ( Tag, )) w:]qi-l-
9 - (o
(t;) < Judr )0 Ugly 42 Z Z (‘7“0\: )0 Vigly +
=1 (urir) ’
2
WA
Vo b do dp
i =1 (\()Yiayj 0\'*11*} e dp
Similarly, from (1.9) we obtain
n--1
AR o= N
SRR MC PR 15
J=1 (123) 5 =
a2, 22, 94, | L3 s
(au(?qj dvdg * 7 dudg T B3z P avag, T
19 a, v
AB of 8)"39,- )OIII*}QJ+ Z ( dudy ) Uty b
{uriry
D ME TP TS
1=1 (urw) auayi 0 T z,,rzl(aviaviroh*vj*} Af dadp
Mz¥, ~ 2ph * P 2] S
5o = g b+ ) | e (3.15)
s 2
ry h? K B o/ "
1 ! .
L+ 31?1/?2)”1 +33F % A (  t T,>11u+
a A/ i
75 7w + ) T) |} asanap
(3.16)

while from (1.8) and (3.4) we have
4Eh
82 lly = T S Ty (£, %a) AB dotdB

§
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In this manner (3.11)— (3.16) yield the expression (3.9) for GL”WA
Let us now find bguﬂv‘ Taking into account (1.7) and (1.9) we transform the expression
(3.10) to the form
g 1 _ \ 2
W=~ 2923 [U (E1 B Ba) + 5 Q2 (82 4 izz)] dt+ QUF 20 + 8y )) by + (CL (3.17)

At

Here the integral of the function over At should be regarded as a difference of the integrals
of this function over the regions t1; and 1,. Let us denote by @ (r, 7 7;5.9;) the integrand func-
tion in (3.17) transformed to the variables .., 7..15. Equations (3.2) and (3.6) in these vari-
ables will assume the foxm

Gy = @ (ry. 0025, 0) = ¢q, Dy (2, 23, 75, 45 ) = ¢g + Ac (3.18)

The equation for @, 1is written with the accuracy of up to the terms of first order of small-
ness, in the form

@y = D (1, 7505, ¢)) —~ QT2 + 8,2 8 = ¢ + Ac (3.19)

The fluid in the regions % and T, is situated,with respect to the surfaces (3.18), on the
side for which @y > ¢y, ®, > ¢ + Ac respectively.

Let N, be a certain point on the surface ®, ¢, while V¥ be a point belonging to the space
(¥, 73, r3)  and lying on the perpendicular to this surface passing through the point V, and suf-
ficiently close to it. We denote by x, and x the radius vectors of the points VN, and .\ rela-
tive to 0. Then

AN =X — Xy o= = A grad @ (3.20)
where 2 is the proportionality factor, positive for the point V:®, <¢ and negative if ®, >¢,.

We denote by %, the value of A for the surface (3.19). We have, with the accuracy of up to
the first order of smallness

n—1
N ) I
mlsrad dlyt - Y () 0 QUGG+, 87 - e (3.21)
=1 qj *
where the asterisk means that the corresponding quantity is computed on the surface O, =

for ¢;=0(=1,..., n—1).

Let us now consider the points of the space (z,,7.,7,) lying near the inner surface 5.7 of
the shell, for the unperturbed state of the system. We denote by r.r and r the radius
vectors, relative to the point O of the inner surface of the shell for the unperturbed and
perturbed state of the system, and of the point lying near the surface S§,7 From (1.3) we
obtain the following expressions for these radius vectors:

ro=M+Ui—am+nxQ) ri=r+Ug—~k@n Q) r=ro-+:(n-n< Q) (3.22)

From these we find, taking into account (1.4), the following expressions for the coordinates
z, 2, and ¥ of the vector r:

7= ap (o B) 2 2 — 2 (ny — i) = 1,2, 3) (3.23)
where ui/” and "' are the values of ;™ and w,!! for the unperturbed motion. We denote
by z the value of : for theinner surface § of the shell in the system in perturbed state.

From (3.22) and (1.3) we obtain, with the accuracy of up to the terms of first order of small-
ness,

St e (xR = Uyn = —wy (3.24)

The condition that the values of regions volume 1, and 7, are equal and (3.21), (3.24), to-
gether yield the following linear equation with the accuracy of up to terms of first order of
smallness:

n—j

[ , &y v ds
Ac-- Qe g _ _) | ! _
51 IR Y E (aqj ). o) reaa (3.25)

1=

w*<1 - 1’%})(1 7;—12).-1Bdadﬁ ~a

which connects Ac with 8,,/. Another similar equation can be cbtained by calculating, in the
first approximation, the quantity

{AC - QI (Bt HEg) 0 — (3.26)

o

By =02 ) Gt ED AT -,
AT

-
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n—1
om IBC 482 o :
E (795;)* qi}m ay - t‘:sw* (B2 R E7)y
=t ’ - 5
/ h h
{1 — 71-) (1 - 737) AB da dp
Taking into account (3.8), (3.11) and (3.12) we obtain, from (3.25) and (3.26), the following
expressions for Ac and §,,/ :
Ao = QU 5, o0 = QW (3.27)
R
(i) i C i i
= 3 e, 4 {UD o By g+ 20 (3, By + 69 (@, B) wy) AB dox d
=1 S
(i =1,2)
where ¢ denote the specified constants and ), ¢, 1) are known functions of « and 8. Let
(3.28)

us now find the integral in (3.17)

Sm@haawr,2S{moy@QWw+4m6uu

o

At
nl 3
[2 acD) ‘\2 ds 1 3{ "Z I \] )
( g, ) %1 TTavad @y 73 p Y o (ajri L (g —wig) —

J=1
T}
R I fe 3 ko
}\ - )(z_.-«j AB dedf

O AR

From (3.17), (3.28), (3.11), (3.12) and (3.27) follows the expression for 63_,(_:)“ and the re-
2 and 6Ww? :

sults obtained yield the following expressions for 8% W i
n—1
8y W = 02,11, +5 12 ) a0, (@ i e a0 wi) +
s =1
Valo, B e, Ve Vao 74')] AB dadp + QN2
n—1 n—i
ég(z)”. i 2 ;599 -+ [2 2 Qngi (& B i Vs wy) -+
j=1

=1

D (e, By w,?] AB doedp — ai] 2 — 20501y — aaly? 4+ QAL 2L+ 17
I = S Lo (0 B tgr vy wy) ABdadB, k=1,2,3,4
Ei
Ly Vgy Wy
4> 03 ==

and a;, ax a3

Here Li,. .., Ly Lyj Ly are known linear forms of u,,v,,w,,V, is a known quadratic form of
is a known function of a,f;ay are specified constants, with
Taking into account (3.7) and (3.11}), we now finally obtain the following expression

Ve Ya'h D
1,2, 3).

for (W),

k23 n—i
W)= D) 8:50:8;+2 3} g1 + 83,1, + (3.29)
J=1 j=1
S V®AB da d -+ Q3 — auly? — 2aglyly — agl?
5

B o
£y;=ay; + (’55;:’9?]7)0' =L+l Lgy=bLitle
Vv~ v, 4 D,

(1) _ )]
1].)_3 LWABdadp, 1
)

When the system passes from the unperturbed state to the perturbed state sufficiently close
to the unperturbed and the liquid occupies an arbitrary space v for the given cavity, we have

w =\ Lay4Bdadp
s

the following relation for &W at fixed gii=1..., n—~1) /2/:
(3.30)

min §2W = (8*W) .,
T
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4. Let the quadratic form of q,....q,, in (3.29) be positive definite; in the case of
the alternating signs of this form the unperturbed motion will be unstablg in the temporal
sense for the nondeformable shell when u=v=w=0. To simplify the calculations we shall
assume that g, —0( %) and put g; =g >0. We shall write the expression (3.29) in the form

(éguf)tzn = (0°1F)u + 65(1)”d "LS V®AB da ap — (4.1)
S

n-—1 A
3 g;llg”' oyl 2 — 2ayl 05 — agly?
=1

n—1
©IV), = M S B, e >0
=1

Let us consider the auxilliary variational problem of finding the minimum u of the func-
tional

o i . ... L R b
Flu,v,w) = —pp ldib[u-’+v=+w‘-’—f—h5(y3+y'-’)}4~lb'dadﬂj (4.2)
S

where ii; and v. ¥ are given by th i
u{a B)y o (@, B, w (%, B0 < a<<2r, By <P<<P with continuous up to the fourth order derivatives in
o and B, satisfying the boundary conditions (1.7) and conditions of 2n-periodicity in « -

Solving this problem we arrive at the inequality

o Lol o 1o 11 QY a2+3 1 &) inm +ha claas of function
€ rormulas {lL.9j, (L.7) ana (1.2}, in e Cia35 Or ruico

on

0]

=

. .
Syly =

I — a2

L\ (uy vyt by £ A2 G 7a) AB dodp (4.3)
8

Using the Cauchy— Buniakowski inequality we obtain from (3.30), (4.1) and (4.3) the following
estimate:

BV > (097), + S VO (o, B tgvar e Voo Vo) AB da df (4.4)
8

, 2WER L T "
I f) = @ T jg[u*_ Frat w2 Ry —

—L
s [(a, a0 L (£ ) Ls* Z gL |
J=1

where § is the area of the middle surface of the shell. From (4.4) we conclude that the in-
equalities ¢;>0(j =1, .., n — 1) and conditions of positive definiteness of the guadratic form
v.®  relative to Uy, Uy Wy, Ver ¥4 together form the sufficient conditions for the positive de-
finiteness of the functional &'W and, by virtue of the Rumiantsev theorem /3/ they will re-
present the sufficient conditions of stability of the steady motion (3.1).

The above method of studying the stability of steady motions of mechanical s
taining perfectly rigid, elastic and fluid elements, was applied to practical pro
5—7/.
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