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A problem of stability of steady motions of a rigid body with a cavity in the form 

of a closed thin elastic shell partially filled with fluid, in a conservative force 

field, is considered. It is assumed that stationary holonomic constraints are im- 
posed on the body allowing its rotation about some spatially fixed axis, and the 

forces acting on the body have zero moment about this axis. The conditions of 
stability are obtained from the solution of the problem dealing with the minimum of 

the changed potential energy Wof the system obtained by studying its second varia- 

tion. Sufficient conditions of the positive definiteness of 62~ are obtained in 
the form of Silvester condition of positive definiteness of some quadratic form of 

a finite number of variables. A method for constructing this quadratic formisgiven. 

1. Let us consider a motion of a rigid body with a cavity in the form of a closed, thin 

elastic shell partially filled with fluid, the surface tension of which can be neglected, in 

a potential force field. We assume that stationary constraints imposed on the body allow its 

rotation about the & -axis of the inertial rectangular coordinate system O'E,E,E;,, and the 
forces acting on the body have zero moment about this axis. We also introduce a moving rect- 

angular coordinate system OSQ~X, the unit vectors i,,i,, i, of which coincidewith theprincipal 

central axes of inertia of the body and shell in the undeformed state. The position of the 

riqid body relative to the 0'LE2E, coordinate system will be described by the Lagrangian co- 

ordinates q,, .., qI, (w ~1 6) where Q,, is the angle of rotation of the body about the c,-axis .We 
define the middle surface S of the shell in the undeformed state by the equation /l/ 

where CL and P are coordinates of a point in the surface. We take the lines of curvatureofthe 

middle surface as coordinate lines a = const(p-lines) and fl= const (a-lines) and assume that 

the a-lines are closed and the values p =/&, S=/-$ correspond to the edges of the shell. We 

introduce a triad of vectors M,, Mb, n 

(1.2) 

We adopt, for the three-dimensional space occupied by the shell, the Kirchhoff-Love /li 

hypothesis on the conservation of the normal element. Then the regions occupied by the shell 

in the undeformed and deformed state can be described, respectively, by the equations /l/ 

(1.3) 

’ - -!- [+- (Au) - -& (Bu)] 
’ - AU 
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where 2h denotes the shell thickness, u is the middle surface elastic displacement vectorand 

& is the vector of elastic rotation. We denote by x,*, xv*' (v== 1, 2, 3) the coordinates of 

the points of the space occupied by the shell in the undeformed and deformed state,respectiv- 
ely. Then from (l-l)- (1.3) we obtain 

x1* = xl (a, 0) + s (xqqx3p - tgaxpfJ, XI*’ = xl* + ?(‘I (1.4) 

where n,, n2 and n, are projections of the vector n on the 51. 5% and x3 axes. 

Let us assume that the shell is rigidly clamped along its edges to the rigid lids (or 

bulkheads) situated at a constant distance from each other, so that 

n = v = w = 0, &d@ = 0 as /3 = PI,~ = p,, 0.s a < 2n (1.5) 

We adopt the following expression /l/ for the potential energy of shell deformation: 

rid = 2Eh 
i s 

II, (E, x) .4 B da dfi 
s 

R;‘= - (n.Blaa)A-2, R;‘= - (n.Mfifi)B-2 

Here E is the modulus of elasticity, o(u < 1) is the Poisson's ratio, EI.F~,F~ and x~,x~,x~ are 
the components of the tangential and bending deformation respectively, and RL, R2 are the 
principal radii of curvature of the surface s. 

Let us denote by II, (qlr...rqn-l) the potential energy of the forces acting on the rigid 

body, and by U(&,&, ES) the force functon of the mass forces applied to the particles of the 
shell and the fluid. We denote by U(XI, x2, 53, 91, . . ., q,_l) the force function transformed to 
the variables XI, x2, z3. Then we have the following expressionforthe potential energy of the 
external forces: 

n, = Q - PI\ u, (a, fi; 
s 

U, 0, w. Y, Y’, qI, . q,,_,) AB da dfi - p.’ \ U do (1.7) 
; 

h 

u*= 
s 
U(r,* fw1, 52* + 702, %i* t- w3; q1, . ., &-I) !4 

-h 

where PI and p2 denote the densities of the shell and fluid, and 5 is the region occupied by 
the fluid at the particular instant. 

The mechanical system under consideration admits the energy integral T -; n = const (FI = 
Fl, + &) and area integrals Gv*&~= k= const where T and Go. denote the kinetic energy and 
kinetic moment of the system relative to the point 0' and E," is the unit vector of the E, 
axis, the projections of which on the ~1 axes are denoted by vi =vi (qt,...,qn-l)(i = 1,2,3). 
We introduce the rectangular Or&‘&‘& coordinate system rotating about the i3 axis With 

angular velocity 61, and denote by T* and Go,* the kinetic energy and kinetic momentofthe 
system relative to the point 0' in its motion relative to the 0'E;l'~2'& axes. 
area integrals become 

Then the energy 

T* + OGo,*.g,' + 1/,JR2 f n = const, Go,*.&" + JQ = k 

where J is the moment of inertia of the system about the gs axis. 
so that the relation Go,*&O=O holds at any instant of time. 

The quantity 9 is chosen 
Then JQ=k and the energy 

integral can be written in the form T* + W= const, where 

11,' = $- + fl (1.8) 
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is the changed potential energy of the system. Taking into account (1.4), we obtain the fol- 
lowing expression for J: 

Here :%f,fa, JZr J, are the mass and the principal axes of inertia of the rigid body and shell 
in its undeformed state, Xi (ql,..., q,_,) fi = 1, 2. 3) are the projections on the zi axes of the 
radius vector drawn from the point 0' to the point 0% @" are the projections on the same axes 
of the vector R = X -- v(X.v) describing the shortest distance between the & axis and the 
point 0,and ric are the coordinates of the center of mass of the rigid body and shell. 

2. We obtain the equations of steady motion from the principle of virtual displacements, 
calculating the first variation 6W and equating it to the elementary work 6A, done aver the 
virtual displacements by the forces of external p(') and internal. PC-' gas pressure acting on 
the shell. The equations have the form 

(2.1) 

grad 1 U 

P = ,+) on P, 

(2.2) 

(2.3) 

\ F(p) on iC~ 
\ F(p(-!) on ,I‘, 

Here C is the free surface of the fluid, SI and ~,are the parts of S corresponding to the 
parts of the cavity walls wetted and not wetted by the fluid, Si + S, = s, and.0 is the hydro- 

dynamic pressure. The equations (2.l.)-- (2.4) must be supplemented by an equationobtainedfronl 

the first equation of (2.41 by replacing U, a. A, &, Ill, R,,y by 11, p,B,.4,1Yz, Ri,y’ respectively, 
and adding the condition (1.5). 
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The steady motions represent unifonnrotationsof the system regarded as a rigid body 
about the & axis, with the angular velocity O= kJ,-I, where J,is the value of J for the 

steady motion. Integrating (2.2) and using (Z-3), we find the pressure within the fluid and 

equation of its free surface during the steady motion 

p (51. E?, i;3) = p, cr&,. E?. Es) + l?& 52' ($1:: + &') - &C (2.5) 

o'(51, $2, 53) + 'i,Q" (5,' t 5,") = c' + P'+/& (2.6) 

The value of the constant c'is determined by the amount of fluid within the cavity. Equations 
(2.4) with (2.5) and (1.5) taken into account are used to determine the deformation of the 
shell in the course of steady motion. Having found the form of the free fluid surface and 
shell deformation, we obtain from (2.1) the values 41,. . ., qR_l for the steady motion of the 
system. 

3. Let us consider a certain steady motion. To simplify the calculations we assumethat 
in this motion qj= OU= i, . . ..n - I) and the whole deformed part of the cavity surface is wet- 
ted by the fluid. Let 

~j = 0 fj == 1,. . I) n - i), u = ug (a, p), v = r. (c2.f)). tr = ii‘* (a, f3) (3.1) 

be a particular solution of the equations of steady motion for which the fluid occupies the 
region Ttl bounded by the free surface Z, determined by the equation 

Cl'" (Et3 5?? 53) = 0. (El, 52, M I- 'i&2 (51" + 512) = co CC" = C"' + P(+/I'l) (3.2) 

by the inner surface S,(-) of the shell, and by the part 2,' , wetted by the fluid, of the sur- 
face of the undeformed cavity walls. The position of the -fluid in relation to the surface 
(3.2) is on that side, for which @,>,E*. 

Let us investigate the stability of the motion (3.1) (the definition of stabilityisgiven 
in /Z/l. We obtain the conditions of stability from the V.V. Rumiantsev theorem /3/ as the 
sufficient condition for the minimum of the changed potential energy w for the motion (3.1). 
Let us put, in the perturbed motion, 

U = U0 $ UC, " = U0 + L1*, L1' y-2 ,I'" -+ u'* (3.3) 

and retain the previous notation for g1 . Wedenote the quantities Y, :'I, Fi,xi,~,~ corresponding 
to the values of (3.3) by 

Y = Ya + Y*, Y = 1.0' + I'*', f2 = 'i* + Fi, 
xi = X1@ -I- xi*, ",c = XiC" i_ _ric* (3.4) 

where the quantities with zero subscript correspond to the motion (3.1). 
From (1.8) we obtain the expression for the second variation 

Pi%' :- - '!$ Q~@J + 62~ + Q'J@-' (SJ)’ 

In addition to the surface (3.2), we introduce a two-parameter family of surfaces 

kl 
@I == u (5,. i,!> E3) +- 2 (Jo + 6J)” (F,,” -+ $i) = co f AC 

(3.5) 

(3.6) 

Let us consider, for some sufficiently small values of Yj (i = I,..., I - I),r~e,~*,~cf, the region 
% occupied by the fluid in the case when its free surface belongs to the family 13.6), with 
AC determined from the condition that the values of regions volume rg and T, are the same. 
We compute the variation :ltfr= 1,J (Pw),,,, of the functional‘w occurrring when the system pas- 
ses from the unperturbed state (3.1) to another, sufficiently close perturbed state in which 
the fluid occupies the region T,. The transformation is carried out in two stages /4/: 1) 
the whole system regarded as a rigid body is displaced into the perturbed state; 2) the shell 
is deformed by imparting to it additional small elastic displacements u*,~*,u‘* and the fluid 
is deformed by applying to its boundary surface a layer A7 = z1 -~of zero volume, into the 
shape with free surface (3.6) so that the fluid occupies the region s,. We write the expres- 
sion for (6z1~'),=,z in the form 

Here &au. and &?w denote the increments in Wincurred during the passage of the system to 
its perturbed state as a rigid body, and when the shell is deformed and a layer A_( placed 
on the boundary surface of the fluid respectively, 6:(,)% and b;_)w are the parts of the in- 
crement bzXu' 
we have 

not depending and depending respectively on the presenceofthe fluid. Similarly 
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6J = 6,f + &J, 6,J = 6,(,,3 + 6,& (3.8) 

PJ = 6,2J +~ 6,2J, 6,2J = 6;,,,/ + “&,J 

Taking into account (3.5), (3.7) and (3.8) we can write the increments 6i,,,W and 6:,,,n' in 
the form 

i) 2 %(I,‘+ h.:(,p, T Q,, ( II, - +wh;(,+ -/ !!“J,1 [26,J6,(,$ + (l&)/y] (3.9) 

(3.10) 

From (1.8) and (1.9) we find 
n--l 

aw’ \ 
A,‘IV = 

W- 

,i-_! 

aqidg, lo 9,q,. ‘lJ -g (T$),qj 
(3.11) 

,.I=, 

Integrating (1.9) by parts and taking into account (1.3) and (1.5), we obtain 

(3.12) 

Here and henceforth - T* denotes a sum of two similar expressions, the secondofwhichisobtained 
from the first when u,~,a,~, R,.R: are replaced by 1'. 1". P. W. RJ~ RI respectively. Further, (1.7), 
(1.8), (1.4) and (3.3) yield, after integrating by parts IT,= 11, 'ij= v') 

id-, 

Similarly, from (1.9) we obtain 

while from (1.8) and (3.4) we have 
ctEh 

622&i = m s n, (e., x.1 AB da’@ 

s 

(3.14) 

(3.15) 

(3.16) 
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II-I this manner (3.11)- (3.16) yield the expression (3.9) for 6&W. 

Let us now find hi,,,W. Taking into account (1.7) and (1.9) we transform the expression 

(3.10) to the form 

(3.17) 

Here the integral of the function over Ar should be regarded as a difference of the integrals 

of this function over the regions TV and r,,. Let us denote by 0 (.rl.~~.r~Iqj) the integrandfunc- 

tion in (3.17) transformed to the variables .I,..~~.T~. Equations (3.2) and (3.6) in these vari- 

ables will assume the form 

00 S 0 (T,.J1, 13, 0) = Co, @'I (111 Z-'? IS, Sj>6J) -= cil + AC (3.18) 

The equation for CD, is written with the accuracy of up to the terms of first order of small- 

ness, in the form 

@I = Q, (.r,. .T>. .I~. qi) - VJ,’ (&* + cz2) 6J = co + AC (3.19) 

The fluid in the regions T" and ~~ is situated,with respect to the surfaces (3.18), on the 

side for which Q, >cO,Q,>c, T- &\c respectively_ 

Let ,\-" be a certain point on the surface @" ~= c,, while .v be a point belongingtothe space 

(.r,,.z~,.r~) and lying on the perpendicular to this surface passing through the point .V,, and suf- 

ficiently close to it. We denote by x0 and x the radius vectors of the points ,VO and .I rela- 

tive to 0. Then 

Jr\= Imm\,i -- h grad @” (3.20) 

where A is the proportionality factor, positive for the point .V:Q, <co and negative if (DO>c,. 

We denote by & the value of h for the surface (3.19). We have, with the accuracy of up to 

the first order of smallness 

(3.21) 

where the asterisk means that the corresponding quantity is computed on the surface CP,, X C,I 
for qj = 0 (1 = 1,. .1 n - i). 

Let us now consider the points of the space (+,,.rlr.r3) lying near the inner surface S,i-' of 

the shell, for the unperturbed state of the system. We denote by r,,. r, and c the radius 
vectors, relative to the point 0 of the inner surface of the shell for the unperturbed and 

perturbed state of the system, and of the point lying near the surface S,,'-' From (1.3) we 

obtain the following expressions for these radius vectors: 

'"=-~tU"--((n+nXR"). P, =r,,+U*-/z[(n~Q,), I‘ =rO -+ z(n ;-" :: Q") (3.22) 

From these we find, taking into account (l-4), the following expressions for the coordinates 

I~. x1 and 13 of the vector r: 

II _ r, (a. p, + W,“(Q) -- (h - z) (fli - u:*a(q (i = 1, 2. 3) (3.23) 

where K,,/~) and K~U(') and toi for the unperturbed motion. We denote 

by 21 the value of ~ f~~t~~~n~~~~r~~c~~(~_ ( 1 of the shell in the system in perturbed state. 
From (3.22) and (1.3) we obtain, with the accuracy of up to the terms of first order of small- 
ness, 

z, m= (r, ~-r"). (n + ,, < 12,) I lJ,.n = - W+ (3.24) 

The condition that the values of regions volume x0 and TL are equal and (3.21), (3.24), to- 
gether yield the following linear equation with the accuracy of up to terms of first order of 
smallness: 

(3.25) 

which connects AC with 8,(,)1. Another similar equation can be obtained by calculating,inthe 
first approximation, the quantity 
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Taking into account (3.81, (3.11) and (3.12) we obtain, from (3.25) and (3.26) 
expressions for AC and ?I,& : 

where ej(" denote the specified constants and $'), pf'),i~(') are known functions of 
us now find the integral in (3.17) 

s 
CD (4,. 5, G) d-r + 

si 
[AC-+ r!vg'(sI" $ ?,?')* WI'- 

hT Y" 

I the following 

(3.27) 

(3.28) 

From (3.17), (3.28), (3.111, (3.12) and (3.27) follows the expression for a<i,,Ii' and the re- _ 
sults obtained yield the following expressions for 62,(1J14 and GMi:(,, : 

n-3 

Here L,,. . ., L,,L,j,Lzj are known linear forms of (l.,v*,wII I', is a known quadratic form of +u.,w~, 
ye, y*',D. is a known function of a, 0; ail and a,, ~2, ~3 are specified constants, with ni > O(i I= 
i,2,3). Taking into account (3.7) and (3.111, we now finally obtain the following expression 

for (@W),,r,: 
n=1 n-1 

WV,=,, = r, g$3iPj + 2 

j=1 
2 @j’Y) + %lnci + (3.29) 

5 V”‘AE da da -t IIV;llf,) - a,l,’ - 2a,I,I, - a,l,z 

g$jza$j +[*JoY Lj”=L,j+Lgjv Lt,) cLl+Lp. 

ir@) = Y, + a@,2 

iw _ 
I 5 > 

LWAB da dfi 
’ fw= pwABdw 

s s 

When the system passes from the unperturbed state to the perturbed state sufficiently close 
to the unperturbed and the liquid occupies anarbitraryspace Y for the given cavity, we have 
the following relation for @W at fixed Pj(j = 1,. -., ~8 - 3) /2/: 

min 6*W = (IS*W)~~~, (3.30) 
X 
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4. Let the quadratic form of ~,,...,Q,,_, in (3.29) be positive definite; in the case of 

the alternating signs of this form the unperturbed motion will be unstable in the temporal 

sense for the nondeformable shell when II- L‘ = WEO. To simplify the calculations we shall 

assume that g,j _ o (i #J) and put g,, = g, > 0. We shall write the expression (3.29) in the form 

(o”ll’),=,x = (h’lI.)* + q(,)$ + s, 1+)/m da dp - (4.1) 

n--l 

2 Q!," - a,l,? - 2n$,I, - %I, 
,=1 

n-1 
(bW)* . . <!'.lo'l;,, + z gj (clj + g;'q? > 0 

,=I 

Let us consider the auxilliary variational problem of finding the minimum 1' of the func- 

tional 

where 8,, and Y- 'I' are given by the formulas (1.8), (1.9) and (1.5), in the class of functions 

u (a. b,, ,'(U. pi, W(X. B)~ 0 <a < 2x9 B, < B < B? with continuous up to the fourth order derivativesin 

a and p, satisfying the boundary conditions (1.7) and conditions of 2s -periodicity in (x . 

Solving this problem we arrive at the inequality 

Using the Cauchy-Buniakowski inequality we obtain from (3.301, (4.1) and (4.3) the following 

estimate: 

where S is the area of the middle surface of the shell. From (4.4) we conclude that the in- 

equalities gj>O(j = i,..., rl-l) and conditions of positive definiteness of the quadratic form 
,' (f) yt, 'i*'together form the sufficient conditions for the positive de- 
fi=nite~;;~tg~,ht~ I;t&(b'tlih;nal 

&M' and, by virtue of the Rumiantsev theorem /3/ they will re- 

present the sufficient conditions of stability of the steady motion (3.1). 

The above method of studying the stability of steady motions of mechanical systems con- 

taining perfectly rigid, elastic and fluid elements, was applied to practical problems in /2, 

5-7/. 
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